Quivers with relations for symmetrizable Cartan matrices I: Foundations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms and Properties for Positive Symmetrizable Matrices

Matrices are the most common representations of graphs. They are also used for the representation of algebras and cluster algebras. This paper shows some properties of matrices in order to facilitate the understanding and locating symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices. Here, symmetrizable matrix are those which are symmetric when m...

متن کامل

Generic Representation Theory of Quivers with Relations

Let Λ be a basic finite dimensional algebra over an algebraically closed field K. Tameness of the representation type of Λ – the only situation in which one can, at least in principle, meaningfully classify all finite dimensional representations of Λ – is a borderline phenomenon. However, even in the wild scenario, it is often possible to obtain a good grasp of the “bulk” of d-dimensional repre...

متن کامل

Exponent matrices and their quivers

Exponent matrices appeared in the study of tiled orders over discrete valuation rings. Many properties of such orders are formulated using this notion. We think that such matrices are of interest in them own right, in particular, it is convenient to write finite partially ordered sets (posets) and finite metric spaces as special exponent matrices. Note that when we defined a quiver Q(E) of a re...

متن کامل

Signed Quivers, Symmetric Quivers, and Root Systems.

We define a special sort of weighted oriented graphs, signed quivers. Each of these yields a symmetric quiver, i.e., a quiver endowed with an involutive anti-automorphism and the inherited signs. We develop a representation theory of symmetric quivers, in particular we describe the indecom-posable symmetric representations. Their dimensions constitute root systems corresponding to certain symme...

متن کامل

Cluster Algebras and Semipositive Symmetrizable Matrices

Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky. It is well-known that these algebras are closely related with different areas of mathematics. A particular analogy exists between combinatorial aspects of cluster algebras and Kac-Moody algebras: roughly speaking, cluster algebras are associated with skew-symmetrizable matrices while Kac-Moody algebras corresp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2016

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-016-0705-1